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effluent), to avoid violation of the T-NH, standard. Oxygen concentrations in the existing METRO effluent would have
to be maintained at approximately 70 mg/L to ensure the hypolimnion remains oxic, To provide oxygen concentrations
25mg/Lin the hypolimnion, oxygen concentrations of = 130 mg/L would have to be maintained in METROs effluent.
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This study evaluates water quality impacts of a Onondaga Lake total phosphorus (TP; Doerr et al.
Proposed deep-water discharge of effluent from a major  1996), nitrogen (Canale et al. 1996), and oxygen (Gelda
(3.5 m3/s (80 MGD)) municipal wastewater treatment  and Auer 1996) models has been widely used in
plant (METRO) on Onondaga Lake, NY. The modeling efforts for other dimictic lakes (e.g., Chapra
deleteriousimpacts ofthe existing shoreline discharge/  and Reckhow 1983, Thomann and Mueller 1987), and
loading conditions from METRO on the lake’s water s appropriate to evaluate the load-reduction and
Quality have been described elsewhere in this issue diversion alternatives considered for METRO by Effler
(Effler et al. 1996a). The fundamental management  and Doerr (1996). However this framework had to be
Strategy for a deep-water discharge (e.g., Fischer et al. modified to accommodate the altered stratification/
1979) is to isolate external loads of nutrients and toxic transport regime that would prevail for a deep-water
Species from upper productive layers during summer, discharge (Owens and Effler 1996). The analysis
by discha.rgmg through a submerged diffuser (e.g., presented in this manuscript documents the: 1)

Owens and Effler 1996). development and testing of a two-layer transport
The two-layer framework adopted for the framework for the water quality models that
——— accommodates the modified regime that would result

1 . R .
Contribution No. 143 of the Upstate Freshwater Institute, from a deep-wager discharge, 2) interfacing of the
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hydrothermal and water quality models, and 3)
simulation of water quality characteristics of the lake
for selected deep-water discharge scenarios.

A Modified Two-Layer
Transport/Mixing
Framework

Owensand Effler (1996) used a calibrated /verified
multi-layer hydrothermal model to demonstrate the
major impacta deep-water discharge of METRO would
have onstratification/ transport/mixing in Onondaga
Lake, and delineated a reasonable range of design
features for a diffuser for a deep-water discharge.
Appropriate accommodation of buoyancy (both
positiveand negative) effectswas crucial to their analysis
(Owens and Effler 1996) and is essential for the related
water quality modeling analyses presented here.

Some of the shoreline inflows to Onondaga Lake,
particularly Ninemile Creek, are negatively buoyant
(Effler and Owens 1996) because of ionic enrichment

(a)

Dense Inflow (e.q. Ninemile Creek)

==

(Effler et al. 1996b), and plunge in the lake (Owens
and Effler 1996; see Fig. 1a). Plunging shoreline inflows
entrain lake water and effectively transport lake watex
from shallow to deep layers (Fig. 1a). The proposed
deep-water discharge of METRO (see Owensand Effles
(1996) for preliminary design features of this proposal
and Effler et al. (1996a) for typical METRO effluen
characteristics) would be positively buoyant and tenc
torise in the water column as a plume. Momentum anc
buoyancy-induced mixing of a submerged buoyan
inflow would transport lake water upward from deej
layers (Fig.1a). These buoyancy effectsinduce avertica
cycling of water (advective transport), with associatec
heat and mass, by entraining ambient lake water.
The modified transport framework for the wate
quality models, shown schematically in Fig. 1b, retain
the desired simplicity (Doerr et al. 1996) of the fixe
boundary two-layer representation, yet accommodate
the inflow and coupled advective transport processe
associated with the atypical buoyancy effects. Inflow
directly enter either of the two layers or are spli
between the layers. The advective transport from th
upper layer to the lower layer associated with th
entrainment of water from the upperlayer (epilimnion
into a plunging inflow is designated Q. (Fig. 1b
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Figure 1.—(a) Transport processes associated with underflows and deep-water discharge of buoyant inflow, and (b) modified transp
framework for two layer water quality models, to accommodate processes of (a).
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Upward advective transport from the bottom layer
(hypolimnion) to the top layer, Q,_ (Fig. 1b), results
from the entrainment of ambient lake water from the
lower layer into the rising plume. These advective
transport components are also adjusted (either Qg or
Qi is increased) to maintain the fixed layer water
balance constraints of the framework (calculated by
difference). The modifications in the transport
framework (Fig. 1b) representanincreasein complexity
thatmake the water qualitymodelsmore mechanistically
realistic by accommodating the prevailing plunging
inflow phenomenon (Effler and Owens 1996, Owens
and Effler 1996). Further, this modified framework
provides for the alterations in vertical transport that
would accompany the proposed deep-water discharge
(Owens and Effler 1996).

Our modeling approach linked the multi-layer
hydrothermal model (Owens and Effler 1996; via its
output) with the modified two-layerwater qualitymodels
directly (as input), and indirectly, via the vertical
diffusion submodel (see Doerr et al. 1996) for the two
layer framework (Fig. 2). Simulations of the
stratification/mixing regime by the hydrothermal
model are driven by meteorology, inflow hydrology
and density (e.g., temperature and salinity (Effler and
Owens 1996)), and , for METRO deep-water discharge
scenarios, diffuser configuration (Owens and Effler
1996). Time series of volume-weighted temperatures
ofthe two layers, inflows to the twolayers, and exchange
flows between the layers (according to a user-specified
layer boundary) are generated as output files from the
hydrothermal model. These drive the two-layer water
quality models and vertical diffusion submodel (Fig.
2). The kinetic frameworks of the water quality models
remain unchanged, though the kinetics of certain
biochemical processes may be influenced by the deep-
water discharge option due to resultant changes in
layer temperatures (Owens and Effler 1996).
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Figure 2.-Interfacing of multi-layer hydrothermal model with the
more complex transport framework version of the two-layer water
uality models, ang the vertical diffusion submodel.

The concentrations C,"and C,"introduced in the
modified framework (Fig. 1b) represent the constituent
concentrations of water moving upward and downward
across the layer boundary associated with the flows Q, .
and Q... respectively. These concen trations are
intermediate between the concentrations C, and Cy
(Fig. 1b) predicted by the two-layerwater qualitymodels.
The relationships between the exchange flow
concentrationsand layer concentrations are described
here by:

G, =(1-a) C, + C, (1a)
G'=(0-0) C + aC, (1b)

inwhich o =adimensionlessweightingfactor between
0and 1. Note that the representation of Eq. (1) is only
applicable when advective vertical transport needs to
be accommodated (e.g., Fig. 1a).

A comparative, conservative tracer analysis was
conducted with the multi-layer hydrothermal model
(the basis of evaluation) and the modified transport
framework of the two-layer models (Fig. 1b) to
determine o, (Eq. (1)) and to establish the veracity of
the modified framework in simulating the impact(s) of
the proposed deep-water discharge. Loading conditions
for the tracer analysis were set to mimic those for TP, a
particularly critical constituent for this culturally
eutrophic system (e.g., Effler et al. 1996a). In this
simulation, the flow rates of the tributaries and METRO
were set to their 1989 average values. The TP
concentration of the tributary inflows was set to 110
Hg/L, while that for METRO was specified as 550 pg/
L. These values are representative of average TP
concentrations for these inputs. The flow-weighted
input concentration is 195 Hg/L, which would also be
the steady-state lake concentration for a completely-
mixed system. Meteorological, tributary hydrology, and
inflow density conditions were set to those measured in
1989 (e.g., Owens and Effler 1996). METRO discharge
specifications were a discharge depth of 18 m and the
diffuser configuration of Owens and Effler (1996).
Simulations were initialized at spring turnover at a
tracer concentration of 195 ug/L.

The predictions of the multi-layer hydrothermal
model were compressed into two layers (volume
weighting of multi-layer output) according to the
boundary depth of 8.5 m used in the original (Canale
etal. 1996, Doerretal. 1996, Geldaand Auer 1996) two-
layer water quality model simulations. The
hydrothermal model predictions depict decreases in
tracer concentration in the upper layer with the onset
of summer stratification. These are attributable to the
“trapping” of the METRO discharge in the lower layer
and continued flushing of the upper layer (Fig. 3). The
subsequent increases in tracer concentration in the
upper layer in late summer largely reflect intrusion of
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buoyant, enriched METRO inflow above the 8.5 m
boundary. Increases in concentration in the lower
layer throughout the stratification period are predicted
(Fig. 3) in response to the deep-water discharge.
Predictions with the two-layer model were made
according to model linkages described previously (Fig.
2) for various specified values of o, with the goal of
obtaining the optimal match with the multi-layer
simulations (Fig. 3). The best closure of the two models
was achieved with o > 0.5. Performance of the two-
layer framework was insensitive toincreasesin o above
0.5, as this influence was compensated for by changes
in the computed distribution of the diffusion coefficient
(see Fig. 2, diffusion submodel). Consequently, avalue
of a=0.5wasadopted for all the modified water quality
models. The veracity of the modified two-layer frame-
work is depicted by its nearly-equivalent simulation of
tracer concentration to that obtained with the multi-
layer model (Fig. 3). Performance for the upper layer,
the primary focus of management concern (e.g.,Effler

Table 1.-Summary of features of water quality models.
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Figure 3.-Comparative tracer analysis with the multi-layer
hydrothermal model (results presented for two-layer segmentation)
and modified two-layer transport framework ( & = 0.5) of the water
quality models. Demarcation depth of 8.5 m. LML - lower mixed
layer; UML - mixed layer.

Feature(s) Model

TP N DO
reference Doerr et al. 1996 Canale et al. 1996 Gelda et al. 1996
management version Effler and Doerr 1996 Effler and Doerr 1996 Effler and Doerr 1996
dimensionality 1 - vertical 1-vertical 1 - vertical
layers 2 2 2

time year-round, daily time
step of loads and model

solution

same as TP same as TP

vertical diffusion from T profiles, with same as TP same as TP
estimates submodel (Doerr et al.
1996)
constituents externally TP T-NH,, NO_, DON, DO, CBOD
loaded d-PON
processes/kinetics settling, settling of PON, reaeration
vertical mixing nitrification, net production, due to
sediment release denitrification, phyto. growth
sediment release of T-NH, exertion of NBOD
volatilization of NH, exertion of CBOD
net uptake of T-NH,/ RS oxidation
formation of p-PON,
due to phyto. growth SOD
hydrolysis of DON
decomposition of d-PON
constituents simulated TP p-PON, d-PON, PON, RS, DO, CBOD
DON, T-NH,, NO_, TKN,
TN
abbreviations:  T-NH, - total ammonia PON - particulate organic N T - temperature

NH, - free ammonia

NO_ -sum of nitrate (NO)
plus nitrite (NOY

DON - dissolved organic N

p-PON - phytoplankton PON
d-PON - detrital PON

TEN - total Kjeldahl N
TN-total N

SOD - sediment oxygen demand
RS-reduced species (in oxygen equivalents
CBOD - carbonaceous BOD

NBOD - nitrogenous BOD
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prediction of Spring concentrations, The under-the-

Ice simulations of the modified framework should be
considered an enhancement

that may track reality

more closely. This change does not significantly
influence subsequent simulations during the critical
water quality period of summer (Fig. 4).

Water Quality Simulations

The analysis presented here is a screening-level
effort intended to predict selected features of water
quality in Onondaga Lake in response to a deep-water
discharge for the METRO effluent. It should not be

confused with a regu

latory analysis. Note, for instance,

there is no exhaustive effort to arrive at the most
appropriate set of critical discharge (e.g., diffuser
design, as described by Owens and Effler (1996)) and
ambient environmental conditions, that may be

Table 1.-Summary of features of water quality models.
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necessary to support regulatory decision (s) and final

engineering design. Rather
evaluate the potential of re

benefits from the propo

Alldeep-water dischar

» this analysis serves to

alizing certain water quality

ge evaluations have adopted

the “selected” diffuser design specified by Owens and
Effler (1996); depth of 18 m, diffuser length of 75 m,
with 35 ports, and a port diameter of 25 cm. The effect
of reasonable variationsin the details of diffuser design
(Owens and Effler 1996) on water quality predictions
is minor. The analysis assumes that the deep-water
discharge operates continuously, except as indicated.
METRO discharge flowsand constituent concentrations

were those measured in 1989,

otherwise. The seasonal dist
phytoplankton growth rate (see
definition) in the N model was
demarcation depth of 4.5 m 1]
assuming an unchanged dis
(i.e., 1989) for the upper m

except as specified
ribution of “net”
Canaleetal. (1996) for
recalibrated for a layer
ustified subsequently),
tribution of chlorophyll
ixed layer. However, it is

Feature(s) Model
TP N DO
reference Doerr et al. 1996 Canale et al. 1996 Gelda et al. 1996
management version Effler and Doerr 1996 Effler and Doerr 1996 Effler and Doerr 1996
dimensionality 1 -vertical 1 -vertical 1 -vertical
layers 2 2 2
time year-round, daily time same as TP same as TP
step of loads and model
solution
vertical diffusion from T profiles, with same as TP same as TP
estimates submodel (Doerr et al.
1996)
constituents externally TP T-NH,, NO_, DON, DO, CBOD
loaded d-PON
Processes/kinetics settling, settling of PON, reaeration
vertical mixing nitrification, net production, due to
sediment release denitrification, phyto. growth

sediment release of T-N H5
volatilization of NH

exertion of NBOD
exertion of CBOD

net uptake of T—NH;/ RS oxidation
formation of p-PON,
due to phyto. growth SOD
hydrolysis of DON
decomposition of d-PON
constituents simulated TP p-PON, d-PON, PON, RS, DO, CROD

DON, T-NH,, NO_, TKN,
TN

abb!‘evia[i()ns;

T-NH, - total ammonia

PON - particulate organic N

T - temperature

NH, - free ammonia

NO, - sum of nitrate (NOy
plus nitrite (NOY

DON - dissolved organic N

P-PON - phytoplankton PON
d-PON - detwrital PON

TKN - total Kjeldahl N

TN - total N

SOD - sediment oxygen demand
RS-reduced spedies (in oxygen equivalents
CBOD - carbonaceous BOD

NBOD - nitrogenous BOD
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important to note that the decreasesin the depth of the
upper mixed layer predicted for the deep-water
discharge scenarios (Owens and Effler 1996) would
likely cause a systematic shift to higher concentrations
of phytoplankton in that layer (e.g., Lorenzen and
Mitchell 1973, 1975, Oskam 1973, Stefan etal. 1976), if
existing nutrient conditions continued (Connors etal.
1996).

All model predictions correspond to the fourth
consecutive year of simulations, to represent steady-
state conditions for this rapidly flushed (Effler and
Hennigan 1996) system. The base cases are the retest
simulations made with the modified transport
framework versions of the water quality models (Fig. 4).

TP Simulations

Simulations of TP for the upper layer illustrate the
benefits of isolating METRO inflow from the upper
productive waters (Fig. 5a), and the potential for
reduced internal loading of phosphorus associated
with maintaining oxia in the hypolimnion for the April-
September interval (Fig. 5b). The oxia benefit may be
described alternately as a “kinetic” benefit (Fig. 5b), as
it is associated with changes in the values of kinetic
coefficients attributable to oxia. Predicted summer

quality models for OnondagaLake,originalandmodiﬁedtmnsponframeworks: (a) TP model,

9. LML - lower mixed layer; UML-upper mixed layer.
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Figure 5.-Simulations of TP concentration for the upper mixed
layer of Onondaga Lake for the METRO deep-water discharge
proposal (18 m discharge depth, diffuser design according to Owens
and Effler (1996)), for the conditions of 1989: (a) for model
demarcation depths of 4.5, 6.5, and 8.5 m, compared to exist'u{g
(base case) shoreline case, and (b) additional benefit of opﬁmi-?“c
changes in kinetic coefficients (see Table 2) for a dema.rcau_oﬂ
depth of 4.5 m, relative to the 4.5 m demarcation depth case with
kinetic coefficients reflecting existing conditions.
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average (mid-May to mid-September) epilimnetic TP
concentrations (['I'P]e, ug/L) are presented for the
various model runs (Table 2). The guidance value for
[TP], established in New York State is 20 pg/L
(NYSDEC1993: alsosee Effleretal. 1996a) . Simulations
are presented for demarcation depths of the two-layer
model of 8.5 (adopted for original and retested models
(e.g.Fig.4)),6.5,and4.5m (Fig.5a). Kinetic conditions
were the same as those developed for the original
models (e.g., Table 2) for these runs. The substantial
sensitivity to the demarcation depth (Fig. 5aand Table
2) largely results from predicted impacts of the deep-
water discharge on the lake’s stratification regime
(Owensand Effler 1996). The upper mixed layerwould
be shallower, and the TP enriched buoyant METRO
discharge would intrude into the lake’s water column
over the depth interval of 4.5 t0 8.5 m in late summer
(Owens and Effler 1995). The case of 4.5 m as the
demarcation depth best reflects conditions that would
prevailin the upper mixed layer throughout the summer
with a deep-water discharge in operation (Owens and
Effler 1996). The predicted value of [TP}e for this
vertical segmentation is 63 ng/L. The progressively
higher predicted concentrations (Fig. 5a, Table 2) for
deeper model segmentations reflect greater relative
contributions from the rising METRO discharge in late
summer (Owens and Effler 1996). It should be noted
that the vertical segmentation effectindicated here for
[TP]_for the deep-water discharge (Table 2) is not
manifested for this depth range under existing
conditions, eg.,[ TP]evalues calculated from measured
profiles generally do not differ significantly for these
same layer boundary depths. Note the earlyandabrupt
enrichment of the upper waters in September for the
deep-water discharge scenario (Fig. 5) reflects a
shortening of the stratification period, another impact

Table 2.-Summer average epilimnetic TP concentrations
[TP]predicted with modified TP model for selected scenarios,
for 1989 METRO conditions.

Case Description [TP],
No. Mg/L
—_—

1. exXisting conditions 83
2. diffuser, 8.5 m model boundary, existing kinetics 82
3. diffuser, 6.5 m model boundary, existing kinetics 69
4. diffuser, 4.5 m model boundary, existing kinetics 63
5* diffuser, 4.5 m model boundary, kinetics changed- 42

SRR=3 mg/m?/d, (PP/TP), set equal to measured
conditons of (PP/TP)C
6. diffuser, 4.5 m model boundary, existing kinetics, 50

effluent TP concentration = (0.2 mg/L (effluent
filtration)

PP/TP),1 “Tatio value for bottom mode] layer; (PP/TP)_-ratio

*(
Value for ‘P model layer; SRR - sediment release rate for
phOSphorus.

predicted with the hydrothermal model (Owens and
Effler 1996).

The concern for TP concentration in the upper
waters of a lake is predicated largely on the potential to
Support phytoplankton growth (e.g., Aueretal, 1986,
Chapra and Dobson 1981, Vollenweider 1975, 1982).
This interaction between the concentration of the

irradiance (Kirk 1983, Wetzel 1983). This interplay is
limited to the upper mixed layer (Stefan et al, 1976) in
waters with poor light penetration such as Onondaga
Lake (Perkins and Effler 1996). For these reasons, we
conclude that the 4.5 m demarcation depth scenario is
the best representation to evaluate the trophic state
implications of the deep-water discharge.

The proposed deepwater discharge could also
change internal loading of P within the lake, Internal
loading of P within the framework of the Onondaga
Lake TP model is represented by two kinetic/
stoichiometric inputs, the sediment release rate (SRR)
and the particulate P (PP) to TP ratio (PP/TP; Doerr
etal. 1996). Reduced, or negligible, values of SRR are
expected for sediments with an oxidized microzone
(i.e., oxic hypolimnion) relative to systems with anoxic
hypolimnia (e.g., Bostrom and Petterson 1982, Fillos
and Swanson 1975, Holdren and Armstrong 1980,
Kamp-Nielson 1974, Mortimer 1941, 1942, 1971).
However, significant P release from sediments under
oxic conditions has been reported (e.g., Jensen and
Andersen 1992, Kamp-Nielsen 1975, Lee et al. 1977,
Sridharan and Lee 1974). Penn (1994) reported the
seasonality of SRR for Onondaga Lake based on
experimentswithintactsediment cores. The minimum
value of approximately 3 mgP/m?/d measured by
Penn (1994) on cores collected in spring has been
adopted here for the oxic hypolimnion analysis. This
value is substantial for oxic conditions (e.g., Bostrom
and Petterson 1982, Kamp-Nielson 1974, 1975). The
PP/TP ratio in the hypolimnion results, in part, from
the sediment release of P. To provide an upper bound
for the potential benefit of maintaining oxygenated
conditions, we used a time distribution for PP/TP for
the lower layer €qual to that specified for the upper
layer (Doerr et al, 1996).

The conditions adopted for the oxygenated
hypolimnion scenario are highly optimistic,
representing a lower bound of [TP]E (Case 5, Table 2,
42 pg/L). If oxic conditions cannot be maintained,
the most representative prediction for [TP]e for the
deep-water discharge alternative corresponds to the
4.5 m segmentation depth simulation that does not
invoke kinetic benefit (Case 4, Table 2). Additionally,
A management scenario was evaluated that includes
increased treatment associated with effluent filtration
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at METRO (effluent TP concentration reduced to 0.2
mg/L (Efflerand Doerr 1996) ). The predicted summer
average epilimnetic TP concentration for this case was
50 pg/L (Case 6, Table 2). At these concentrations, or
even for the most optimistic projection (Table 2), little
improvement in the lake’s culturally eutrophic state
would beexpected. These concentrations exceed values
associated with the eutrophic classification (Auer etal.
1986, Chapra and Dobson 1981, Vollenweider 1975,
1982).

T-NH, Stmulations

Simulations with the modified N model (Fig. 6)
address three issues: 1) the desirability of operating the
deep-water discharge only duringsummerstratification
instead of yearround (Fig. 6a), 2) the benefit of
maintaining oxia in the hypolimnion to reduce T-NH,
in the epilimnion (Fig. 6b), and 3) the METRO effluent
concentrations that would be necessary to meet the T-
NH, standard established for Onondaga Lake (Fig.
6c). The T-NH, standard established by the State of
New York for the lake (0.77 mgN /L) to protect against
the toxic effects of free ammonia (NH,), based on
analysis of lake pH and temperature data, appears for
reference with all the simulations. All simulations are
based on a 4.5 m boundary for the model layers, and
1989 METRO effluent and ambient characteristics
(Fig. 7), except as specified otherwise.

The operation of a deep-water discharge year-
round would have a deleterious effect on late spring/
earlysummer T-NH, concentrations in the upperwaters,
compared to a “summer only” discharge scheme (Fig.
6a). Violations of the NH, standard are often most
severe in the upper waters in this period (e.g., Effler et
al. 1990, Effler etal. 1996a). The higher concentrations
foryear-round operation result from trapping much of
the T-NH, from the METRO effluent in the lower layer
during winter (Owens and Effler 1996). Distribution of
the accumulated T-NH, throughout the water column
with the onset of spring turnover causes an abrupt
increase in concentrations in the upper layer (Fig. 6a).
A seasonal operation scheme for the deep-water
discharge (i.e., use of existing shoreline discharge for
winter months and deep-water discharge in summer)
would reduce the spring turnover concentration by
allowing a portion of the wintertime METRO load to
exit the lake before spring. However, severe violations
of the T-NH, standard would continue to occur in the
upper waters of the lake, particularly in late spring/
early summer and fall (Fig. 6a), if METRO effluent
were discharged into the hypolimnion of the lake with
the prevailing N species concentrations (e.g., existing
case in Fig. 7).

Furtherreductionsin T-NH, concentrations in the
upper layer could be achieved by maintaining oxic
conditions and thereby promoting nitrification (see
Canale etal. 1996) in the hypolimnion (see DO analysis
in subsequent section). The benefit is depicted in
simulations (Fig. 6b) for which a “summertime only”
deep-water discharge scheme was adopted. Part of the
apparent oxia benefit (Fig. 6b) is attributable to
predicted increases in hypolimnetic temperature
associated with the deep-water discharge (Owens and

8

(a)

6+

T—NH3 (mgN/L)

1989

Figure 6.-Simulations of T-NH, for the upper mixed layer of
Onondaga Lake for the METRO deep-water discharge proposal (18
m discharge depth, diffuser design according to Owens and Effler
(1996), model demarcation depth of 4.5 m), for conditions of 1989:
(a) evaluation of effect of year-round versus summertime only
operation of the deep-water discharge, (b) benefit of maintaining
oxia versus anoxia in hypolimnion, for a summertime only deep-
water discharge, and (c) evaluation of the effect of increased
treatment at METRO, for summertime only deep-water discharge
and oxic hypolimnion, for three levels of treatment. Standard for
T-NH, (0.77 mgN/L) included for reference.
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Figure 7.-Monthly average concentrations for METRO effluent for
three deep-water discharge management scenarios, existing
conditions at METRO, conditions for the City of Baltimore
wastewater treatment facility, and concentrations necessary to avoid

Effler 1996), as nitrification only operates in the N
model at temperatures > 10°C (Canale etal. 1996). The
effect on the upper layer for the critical late spring/
earlysummer period would be small (Fig. 6b). However,
the benefit becomes relatively greater subsequently,
Particularly with the approach to fall turnover (Fig,
6b), because ofa reduced hypolimnetic pool of T-NH,.
Forthe case of exisingMETRO effluent characteristics,
Operation of the deep-water discharge during summer,
and maintenance of oxic conditionsin the hypolimnion,
tontinued severe violation of the T-NH, standard is
Predicted (Fig. 6b).

W0 model runs address the level of treatment

necessary at METRO to avoid violation of the T-NH,
standard. Maintenance of hypolimnetic oxia and
Summertime (only) operation ofa deep-water discharge

adopted for the first scenario correspond to the
operating characteristics of the Baltimore WWTP (~17¢
MGD) thatachieves a high level of nitrification during
the late spring-fall interval, butsubstantial]y less TKN/
T-NH, treatment during the winter months (Fig. 7a
and b). Unfortunately, wintertime nitrification
performance is critical in controlling late spring/early
summer T-NH, concentrations in Onondaga Lake
(Effler etal. 1996a). Though the duration and margin
ofviolation of the T-NH, standard for the upper waters
of the lake would be greatly reduced by this improved
levelof treatmentat M ETRO,violationswould continue
tooccurinlate spring/ early summer for the conditions
of 1989 (Fig. 6¢).

The second simulation scenario corresponds to
additional nitrification atMETRO over the cold months
(November through April) ad €quate toavoid violation
of the T-NH, standard for the conditions of 1989. The
T-NH, concentration of the effluent would have to be
reduced to about 3.6 mgN/L during this interval (Fig.
7b; and TKN to about 5.8 mgN /L (Fig. 7a)) to avoid
violation of the standard. Even greater levels of
treatment would be necessary to avoid violations for
reasonable critical conditions of low tributary runoff
(e.g., 1987 runoff, one in ten year low flow, as described
by Efflerand Doerr (1996)),and projected increasesin
METRO discharge rates (Onondaga County 1994).

DO Simulations

Part of the proposal for the deep-water discharge
of the METRO effluent calls for Supersaturation of the
effluent with oxygen, with the stated purpose of
“maintaining oxic conditions in the hypolimnion,
thereby preventing therecycle of P from the sediments”
(Onondaga County 1994). We used the modified DO
model to determine the necessary DO concentrations
for the METRO effluent to reach two goals: 1) maintain
oxic conditions within the hypolimnion throughout
summer, and 2) maintain hypolimnetic concentrations
of 25 mg/L (e.g., support fish survival in the
hypolimnion),

The effluent DO concen tration required to reach
these goals decreases with increasinglevels of treatment
for oxygen demanding constituents, primarily
carbonaceousand ni rogenous (e.g., T-NH, and organic
N) BOD. Two different levels of treatment were
evaluated: 1) existing treatment, and 2) the prevailing
level of treatment at the Baltimore facility (Fig. 7). The
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time distributions of TKN and CBOD in the METRO
effluent are presented here as monthly averages for
these two cases (Fig. 7).

We used the 4.5 m demarcation depth for
simulations with the modified DO model, and we
limited oxygenation of the METRO effluent to the
period of summer stratification. Simulations of DO in
the lower layer, for the improved level of treatment
case for METRO (Baltimore), are presented for three
different effluent DO concentrations (Fig. 8). The
lower layer is predicted to become anoxic by mid-July,
without effluent oxygenation; just slightly later than
observed in 1989 (Gelda and Auer 1996). Increasing
the effluent DO concentration to about 40 mg/L is
predicted to be adequate to maintain oxic conditions
through summer stratification; about 100 mg/L would
be necessary to maintain > 5 mg/L throughout the
summer period (Fig. 8). The METRO effluent DO
concentrationsrequired to maintain oxiaand =5 mg/
L in the hypolimnion for the existing effluent quality
aresubstantiallyhigher; 70and 130 mg/L, respectively.

Management Perspectives

This model analysis demonstrates that trapping of
the METRO effluent below the upper mixed layer
duringsummerstratification, by discharging this treated
wastewater to the near bottom waters of the lake, would
result in decreases in TP and T-NH, concentrations in
the lake’s upper waters. These reductions would be
achieved at the price of profoundly altering the
stratification/mixing regime of the lake (Owens and
Effler 1996). Further, the decreases in TP and T-NH,
concentrations would be inadequate to reach related
water quality goals for the lake without additional
treatment at METRO that may be beyond established
technologies for large scale facilities. Phytoplankton
growth probably would not be substantially limited.
The in-lake standard for T-NH,, to protect against the
toxic effects of free ammonia, would continue to be
violated unless major reductions in METRO’s effluent
T-NH, concentration (3.6 <mgN /L) could be achieved
for the nonsummer months. Attention needs to be
given to establishing appropriate critical conditions to
support specification of effluent T-NH, limits for this
management alternative. The deep-water discharge
managementalternative for METRO falls short of what
could be achieved by diverting METRO around the
lake (Effler and Doerr 1996), and has little to offer as
an interim measure, for the lake’s TP and T-NH,
problems.

Thesituation is somewhat different for the oxygen
resource implications of the proposal. It has been

25

— effluent, no DO added

Figure 8.—Simulations of hypolimnetic DO concentrations in
Onondaga Lake for the ambient conditions of 1989, for the deep-
water discharge of METRO (18m discharge depth, diffuser design
according to Owens and Effler (1996), model demarcation depth of
4.5 m), for the Baltimore WWTP TKN and CBOD effluent
concentrations of Fig. 7 for three different effluent DO
concentrations - existing, 40, and 100 mg/L. Predictions indicate
40 mg/L DO in effluent would maintain oxic conditions in the
hypolimnion; 100 mg/L in effluent would maintain DO
concentrations in the hypolimnion 2 5 mg/L.

predicted that diversion of METRO would eventually
eliminate the violation of DO standards in the upper
waters during the fall mixing period (Effler and Doerr
1996). Hypolimnetic anoxia would be delayed
compared to existing conditions, but not eliminated
(Effler and Doerr 1996). The benefits of maintaining
barely-oxic conditions in the hypolimnion are predicted
to be marginal, as the associated reductions in internal
loading of TP and T-NH, to the upper waters are
inadequate to substantially influence phytoplankton
growth or the lake’s status with respect to the T-NH,
standard. However, the maintenance of substantially
higher hypolimnetic oxygen concentrations ( >5 mg/
L) may be attractive to lake managers because of the
potential recovery of fish habitat. The feasibility of
attaining the oxygen concentrations in the METRO
effluent necessary to achieve these in-lake oxygen
concentrations needs to be established.

Managers should also be aware of a potential for
increased concentrations of phytoplanktonin the upper
waters of the lake during late summer that might result
from the reduction in the upper mixed layer depth
associated with a deep-water discharge. The literature
clearly supports this response, for the case of nutrient-
saturated phytoplankton growth (e.g., Lorenzen and
Mitchell 1973, 1975, Oskam 1973, Stefan et al. 1976).
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